Exercise 181

Suppose that $T=50+10 \sin \left[\frac{\pi}{12}(t-8)\right]$ is a mathematical model of the temperature (in degrees Fahrenheit) at t hours after midnight on a certain day of the week.
a. Determine the amplitude and period.
b. Find the temperature 7 hours after midnight.
c. At what time does $T=60^{\circ}$?
d. Sketch the graph of T over $0 \leq T \leq 24$.

Solution

Part (a)
The amplitude is 10 , the (positive) coefficient of the sine function. The period is

$$
\frac{2 \pi}{\frac{\pi}{12}}=24
$$

the number of hours in a day.

Part (b)

Plug $t=7$ into the formula to find the temperature 7 hours after midnight.

$$
T(7)=50+10 \sin \left[\frac{\pi}{12}(7-8)\right] \approx 47.4^{\circ} \mathrm{F}
$$

Part (c)
$T=60^{\circ}$ when the sine function is +1 , which occurs at

$$
\begin{gathered}
\frac{\pi}{12}(t-8)=\frac{\pi}{2} \\
t-8=6 \\
t=14
\end{gathered}
$$

2 PM.

Part (d)

Below is a graph of $T(t)$ versus t.

